Microsoft.ML.Trainers
AveragedLinearOptions
AveragedLinearTrainer<TTransformer, TModel>
AveragedPerceptronTrainer
CoefficientStatistics
ComputeLogisticRegressionStandardDeviation
ComputeLRTrainingStdThroughMkl
ExpLoss
ExponentialLRDecay
FeatureContributionCalculator
FieldAwareFactorizationMachineModelParameters
FieldAwareFactorizationMachinePredictionTransformer
FieldAwareFactorizationMachineTrainer
HingeLoss
ICalculateFeatureContribution
IClassificationLoss
ILossFunction<TOutput, TLabel>
IRegressionLoss
IScalarLoss
ISupportSdcaClassificationLoss
ISupportSdcaLoss
ISupportSdcaRegressionLoss
ITrainerEstimator<TTransformer, TModel>
KMeansModelParameters
KMeansTrainer
LbfgsLogisticRegressionBinaryTrainer
LbfgsMaximumEntropyMulticlassTrainer
LbfgsPoissonRegressionTrainer
LbfgsTrainerBase<TOptions, TTransformer, TModel>
LdSvmModelParameters
LdSvmTrainer
LearningRateScheduler
LinearBinaryModelParameters
LinearModelParameters
LinearModelParameterStatistics
LinearMulticlassModelParameters
LinearMulticlassModelParametersBase
LinearRegressionModelParameters
LinearSvmTrainer
LinearTrainerBase<TTransformer, TModel>
LogLoss
LsrDecay
MatrixFactorizationTrainer
MaximumEntropyModelParameters
MetaMulticlassTrainer<TTransformer, TModel>
ModelParametersBase<TOutput>
ModelStatisticsBase
NaiveBayesMulticlassModelParameters
NaiveBayesMulticlassTrainer
OlsModelParameters
OlsTrainer
OneVersusAllModelParameters
OneVersusAllTrainer
OnlineGradientDescentTrainer
OnlineLinearOptions
OnlineLinearTrainer<TTransformer, TModel>
PairwiseCouplingModelParameters
PairwiseCouplingTrainer
PcaModelParameters
PoissonLoss
PoissonRegressionModelParameters
PolynomialLRDecay
PriorModelParameters
PriorTrainer
RandomizedPcaTrainer
RegressionModelParameters
SdcaBinaryTrainerBase<TModelParameters>
SdcaLogisticRegressionBinaryTrainer
SdcaMaximumEntropyMulticlassTrainer
SdcaMulticlassTrainerBase<TModel>
SdcaNonCalibratedBinaryTrainer
SdcaNonCalibratedMulticlassTrainer
SdcaRegressionTrainer
SdcaTrainerBase<TOptions, TTransformer, TModel>
SgdBinaryTrainerBase<TModel>
SgdCalibratedTrainer
SgdNonCalibratedTrainer
SmoothedHingeLoss
SquaredLoss
StochasticTrainerBase<TTransformer, TModel>
SymbolicSgdLogisticRegressionBinaryTrainer
TrainerEstimatorBase<TTransformer, TModel>
TrainerEstimatorBaseWithGroupId<TTransformer, TModel>
TrainerInputBase
TrainerInputBaseWithGroupId
TrainerInputBaseWithLabel
TrainerInputBaseWithWeight
TweedieLoss
UnsupervisedTrainerInputBaseWithWeight
net10.0-windows7.0
namespace Microsoft.ML.Trainers
nuget.org | 0.0 % Reference this API 0.0 % Derive from this class or interface 0.0 % Read field 0.0 % Write field |
---|---|
Upgrade Planner | 0.0 % Reference this API |
.NET | 5.06.07.08.09.010.0 |
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to net10.0 | |
Platforms | This API is only available when you target a specific platform: |
Windows | 7.0 |
Information specific to net10.0-windows7.0 | |
Assemblies | Microsoft.ML.Data , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 Microsoft.ML.PCA , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 Microsoft.ML.Mkl.Components , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 Microsoft.ML.StandardTrainers , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 Microsoft.ML.Recommender , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 Microsoft.ML.KMeansClustering , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 |
Referencing | Requires any:
|
Package | Microsoft.ML (5.0.0-preview.1.25127.4) netstandard2.0 |
- Built-in API
- Package-provided API