VectorGaussianMoments
VectorGaussianMoments()
VectorGaussianMoments(Int32)
VectorGaussianMoments(VectorGaussianMoments)
VectorGaussianMoments(Double, Double)
VectorGaussianMoments(Vector, PositiveDefiniteMatrix)
Dimension
IsPointMass
Mean
Point
Variance
Clone()
Copy(VectorGaussianMoments)
Equals(Object)
FromMeanAndPrecision(Double, Double)
FromMeanAndPrecision(Vector, PositiveDefiniteMatrix)
FromMeanAndVariance(Double, Double)
FromMeanAndVariance(Vector, PositiveDefiniteMatrix)
GetAverageLog(VectorGaussianMoments)
GetHashCode()
GetLogAverageOf(VectorGaussianMoments)
GetLogAverageOfPower(VectorGaussianMoments, Double)
GetLogNormalizer()
GetLogProb(Vector)
GetMarginal(Int32)
GetMarginal(Int32, VectorGaussianMoments)
GetMean()
GetMean(Vector)
GetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
GetMeanAndVariance(Vector, PositiveDefiniteMatrix)
GetMode()
GetVariance()
GetVariance(PositiveDefiniteMatrix)
IsProper()
IsUniform()
MaxDiff(Object)
PointMass(Double)
PointMass(Vector)
Sample()
Sample(Vector)
SetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
SetMeanAndVariance(Vector, PositiveDefiniteMatrix)
SetNatural(Vector, PositiveDefiniteMatrix)
SetTo(VectorGaussianMoments)
SetToPointMass()
SetToPower(VectorGaussianMoments, Double)
SetToProduct(VectorGaussianMoments, VectorGaussianMoments)
SetToProduct(VectorGaussianMoments, IList<Gaussian>)
SetToRatio(VectorGaussianMoments, VectorGaussianMoments, Boolean)
SetToSum(Double, VectorGaussianMoments, Double, VectorGaussianMoments)
SetToUniform()
ToString()
Uniform(Int32)
WeightedSum<T>(T, Int32, Double, T, Double, T)
operator *(VectorGaussianMoments, VectorGaussianMoments)
operator /(VectorGaussianMoments, VectorGaussianMoments)
operator ^(VectorGaussianMoments, Double)
netcoreapp3.0
namespace Microsoft.ML.Probabilistic.Distributions
{
[DataContract]
[Quality(QualityBand.Mature)]
public class VectorGaussianMoments : CanGetAverageLog<VectorGaussianMoments>, CanGetLogAverageOf<VectorGaussianMoments>, CanGetLogAverageOfPower<VectorGaussianMoments>, CanGetLogNormalizer, CanGetLogProb<Vector>, CanGetMean<DenseVector>, CanGetMeanAndVariance<Vector, PositiveDefiniteMatrix>, CanGetMode<DenseVector>, CanGetVariance<PositiveDefiniteMatrix>, CanSetMeanAndVariance<Vector, PositiveDefiniteMatrix>, HasPoint<Vector>, IDistribution, IDistribution<Vector>, Sampleable<Vector>, SettableToUniform, Diffable, SettableTo<VectorGaussianMoments>, SettableToPower<VectorGaussianMoments>, SettableToProduct<VectorGaussianMoments>, SettableToProduct<VectorGaussianMoments, VectorGaussianMoments>, SettableToRatio<VectorGaussianMoments>, SettableToRatio<VectorGaussianMoments, VectorGaussianMoments>, SettableToWeightedSum<VectorGaussianMoments>, ICloneable
{
public void SetToProduct(VectorGaussianMoments vector, IList<Gaussian> array);
}
}
.NET | 5.06.07.08.09.010.0 |
---|---|
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to netcoreapp3.0 | |
Assembly | Microsoft.ML.Probabilistic , Version=0.4.2403.801, PublicKeyToken=e4813102a62778da |
Referencing | Your project needs a package reference to |
Package | Microsoft.ML.Probabilistic (0.4.2403.801) netstandard2.0 |
Platform Restrictions | This framework does not have platform annotations. |
- Built-in API
- Package-provided API