RegressionTrainers
FastForest(RegressionTrainers, Options)
FastForest(RegressionTrainers, String, String, String, Int32, Int32, Int32)
FastTree(RegressionTrainers, Options)
FastTree(RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)
FastTree(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Options, Action<FastTreeRegressionModelParameters>)
FastTree(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Int32, Int32, Int32, Double, Action<FastTreeRegressionModelParameters>)
FastTreeTweedie(RegressionTrainers, Options)
FastTreeTweedie(RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)
Gam(RegressionTrainers, Options)
Gam(RegressionTrainers, String, String, String, Int32, Int32, Double)
LbfgsPoissonRegression(RegressionTrainers, Options)
LbfgsPoissonRegression(RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
LbfgsPoissonRegression(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Options, Action<PoissonRegressionModelParameters>)
LbfgsPoissonRegression(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Single, Single, Single, Int32, Boolean, Action<PoissonRegressionModelParameters>)
LightGbm(RegressionTrainers, Options)
LightGbm(RegressionTrainers, Stream, String)
LightGbm(RegressionTrainers, String, String, String, Int32?, Int32?, Double?, Int32)
MatrixFactorization<T>(RegressionTrainers, Scalar<Single>, Key<T>, Key<T>, Options, Action<MatrixFactorizationModelParameters>)
Ols(RegressionTrainers, Options)
Ols(RegressionTrainers, String, String, String)
OnlineGradientDescent(RegressionTrainers, Options)
OnlineGradientDescent(RegressionTrainers, String, String, IRegressionLoss, Single, Boolean, Single, Int32)
OnlineGradientDescent(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Options, Action<LinearRegressionModelParameters>)
OnlineGradientDescent(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, IRegressionLoss, Single, Boolean, Single, Int32, Action<LinearRegressionModelParameters>)
Sdca(RegressionTrainers, Options)
Sdca(RegressionTrainers, String, String, String, ISupportSdcaRegressionLoss, Single?, Single?, Int32?)
Sdca(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Options, Action<LinearRegressionModelParameters>)
Sdca(RegressionTrainers, Scalar<Single>, Vector<Single>, Scalar<Single>, Nullable<Single>, Nullable<Single>, Nullable<Int32>, ISupportSdcaRegressionLoss, Action<LinearRegressionModelParameters>)
SentenceSimilarity(RegressionTrainers, SentenceSimilarityOptions)
SentenceSimilarity(RegressionTrainers, String, String, String, String, Int32, Int32, BertArchitecture, IDataView)
xamarinios
namespace Microsoft.ML
{
public static class StandardTrainersCatalog
{
public static LbfgsPoissonRegressionTrainer LbfgsPoissonRegression(this RegressionTrainers catalog, Options options);
}
}
nuget.org | 0.0 %
Reference this API |
---|---|
Upgrade Planner | 0.0 %
Reference this API |
.NET | 5.06.07.08.09.010.0 |
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to xamarinios | |
Assembly | Microsoft.ML.StandardTrainers , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 |
Referencing | Your project needs a package reference to |
Package | Microsoft.ML (5.0.0-preview.1.25127.4) netstandard2.0 |
Platform Restrictions | This framework does not have platform annotations. |
- Built-in API
- Package-provided API