VectorGaussian
VectorGaussian()
VectorGaussian(Int32)
VectorGaussian(VectorGaussian)
VectorGaussian(Double, Double)
VectorGaussian(Vector, PositiveDefiniteMatrix)
Dimension
IsPointMass
MeanTimesPrecision
Point
Precision
Clone()
Copy(VectorGaussian)
Equals(Object)
FromCursors(Vector, PositiveDefiniteMatrix)
FromDerivatives(Vector, Vector, PositiveDefiniteMatrix, Boolean)
FromMeanAndPrecision(Double, Double)
FromMeanAndPrecision(Vector, PositiveDefiniteMatrix)
FromMeanAndVariance(Double, Double)
FromMeanAndVariance(Vector, PositiveDefiniteMatrix)
FromNatural(Vector, PositiveDefiniteMatrix)
GetAverageLog(VectorGaussian)
GetHashCode()
GetLogAverageOf(VectorGaussian)
GetLogAverageOfPower(VectorGaussian, Double)
GetLogNormalizer()
GetLogProb(Vector)
GetLogProb(Vector, LowerTriangularMatrix, Vector)
GetLogProb(Vector, Vector, PositiveDefiniteMatrix)
GetLogProb(Vector, Vector, PositiveDefiniteMatrix, LowerTriangularMatrix, Vector)
GetLogProbPrep()
GetMarginal(Int32)
GetMarginal(Int32, VectorGaussian)
GetMean()
GetMean(Vector)
GetMean(Vector, PositiveDefiniteMatrix)
GetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
GetMeanAndVariance(Vector, PositiveDefiniteMatrix)
GetMode()
GetVariance()
GetVariance(PositiveDefiniteMatrix)
IsProper()
IsUniform()
MaxDiff(Object)
PointMass(Double)
PointMass(Vector)
Sample()
Sample(Vector)
Sample(Vector, LowerTriangularMatrix)
Sample(Vector, PositiveDefiniteMatrix)
SampleFromMeanAndVariance(Vector, PositiveDefiniteMatrix)
SamplePrep()
SetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
SetMeanAndVariance(Vector, PositiveDefiniteMatrix)
SetNatural(Vector, PositiveDefiniteMatrix)
SetTo(VectorGaussian)
SetToPointMass()
SetToPower(VectorGaussian, Double)
SetToProduct(VectorGaussian, VectorGaussian)
SetToRatio(VectorGaussian, VectorGaussian, Boolean)
SetToSum(Double, VectorGaussian, Double, VectorGaussian)
SetToUniform()
ToString()
Uniform(Int32)
WeightedSum<T>(T, Int32, Double, T, Double, T)
operator *(VectorGaussian, VectorGaussian)
operator /(VectorGaussian, VectorGaussian)
operator ^(VectorGaussian, Double)
netstandard2.0
namespace Microsoft.ML.Probabilistic.Distributions
{
[DataContract]
[Quality(QualityBand.Mature)]
public class VectorGaussian : CanGetAverageLog<VectorGaussian>, CanGetLogAverageOf<VectorGaussian>, CanGetLogAverageOfPower<VectorGaussian>, CanGetLogNormalizer, CanGetLogProb<Vector>, CanGetLogProbPrep<VectorGaussian, Vector>, CanGetMean<DenseVector>, CanGetMeanAndVariance<Vector, PositiveDefiniteMatrix>, CanGetMode<DenseVector>, CanGetVariance<PositiveDefiniteMatrix>, CanSamplePrep<VectorGaussian, Vector>, CanSetMeanAndVariance<Vector, PositiveDefiniteMatrix>, HasPoint<Vector>, IDistribution, IDistribution<Vector>, Sampleable<Vector>, SettableToUniform, Diffable, SettableTo<VectorGaussian>, SettableToPower<VectorGaussian>, SettableToProduct<VectorGaussian>, SettableToProduct<VectorGaussian, VectorGaussian>, SettableToRatio<VectorGaussian>, SettableToRatio<VectorGaussian, VectorGaussian>, SettableToWeightedSum<VectorGaussian>, ICloneable
{
public double MaxDiff(object thatd);
}
}
.NET | 5.06.07.08.09.010.0 |
---|---|
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to netstandard2.0 | |
Assembly | Microsoft.ML.Probabilistic , Version=0.4.2403.801, PublicKeyToken=e4813102a62778da |
Referencing | Your project needs a package reference to |
Package | Microsoft.ML.Probabilistic (0.4.2403.801) netstandard2.0 |
Platform Restrictions | This framework does not have platform annotations. |
- Built-in API
- Package-provided API