VectorGaussian
VectorGaussian()
VectorGaussian(Int32)
VectorGaussian(VectorGaussian)
VectorGaussian(Double, Double)
VectorGaussian(Vector, PositiveDefiniteMatrix)
Dimension
IsPointMass
MeanTimesPrecision
Point
Precision
Clone()
Copy(VectorGaussian)
Equals(Object)
FromCursors(Vector, PositiveDefiniteMatrix)
FromDerivatives(Vector, Vector, PositiveDefiniteMatrix, Boolean)
FromMeanAndPrecision(Double, Double)
FromMeanAndPrecision(Vector, PositiveDefiniteMatrix)
FromMeanAndVariance(Double, Double)
FromMeanAndVariance(Vector, PositiveDefiniteMatrix)
FromNatural(Vector, PositiveDefiniteMatrix)
GetAverageLog(VectorGaussian)
GetHashCode()
GetLogAverageOf(VectorGaussian)
GetLogAverageOfPower(VectorGaussian, Double)
GetLogNormalizer()
GetLogProb(Vector)
GetLogProb(Vector, LowerTriangularMatrix, Vector)
GetLogProb(Vector, Vector, PositiveDefiniteMatrix)
GetLogProb(Vector, Vector, PositiveDefiniteMatrix, LowerTriangularMatrix, Vector)
GetLogProbPrep()
GetMarginal(Int32)
GetMarginal(Int32, VectorGaussian)
GetMean()
GetMean(Vector)
GetMean(Vector, PositiveDefiniteMatrix)
GetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
GetMeanAndVariance(Vector, PositiveDefiniteMatrix)
GetMode()
GetVariance()
GetVariance(PositiveDefiniteMatrix)
IsProper()
IsUniform()
MaxDiff(Object)
PointMass(Double)
PointMass(Vector)
Sample()
Sample(Vector)
Sample(Vector, LowerTriangularMatrix)
Sample(Vector, PositiveDefiniteMatrix)
SampleFromMeanAndVariance(Vector, PositiveDefiniteMatrix)
SamplePrep()
SetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
SetMeanAndVariance(Vector, PositiveDefiniteMatrix)
SetNatural(Vector, PositiveDefiniteMatrix)
SetTo(VectorGaussian)
SetToPointMass()
SetToPower(VectorGaussian, Double)
SetToProduct(VectorGaussian, VectorGaussian)
SetToRatio(VectorGaussian, VectorGaussian, Boolean)
SetToSum(Double, VectorGaussian, Double, VectorGaussian)
SetToUniform()
ToString()
Uniform(Int32)
WeightedSum<T>(T, Int32, Double, T, Double, T)
operator *(VectorGaussian, VectorGaussian)
operator /(VectorGaussian, VectorGaussian)
operator ^(VectorGaussian, Double)
net7.0
namespace Microsoft.ML.Probabilistic.Distributions
{
[DataContract]
[Quality(QualityBand.Mature)]
public class VectorGaussian : CanGetAverageLog<VectorGaussian>, CanGetLogAverageOf<VectorGaussian>, CanGetLogAverageOfPower<VectorGaussian>, CanGetLogNormalizer, CanGetLogProb<Vector>, CanGetLogProbPrep<VectorGaussian, Vector>, CanGetMean<DenseVector>, CanGetMeanAndVariance<Vector, PositiveDefiniteMatrix>, CanGetMode<DenseVector>, CanGetVariance<PositiveDefiniteMatrix>, CanSamplePrep<VectorGaussian, Vector>, CanSetMeanAndVariance<Vector, PositiveDefiniteMatrix>, HasPoint<Vector>, IDistribution, IDistribution<Vector>, Sampleable<Vector>, SettableToUniform, Diffable, SettableTo<VectorGaussian>, SettableToPower<VectorGaussian>, SettableToProduct<VectorGaussian>, SettableToProduct<VectorGaussian, VectorGaussian>, SettableToRatio<VectorGaussian>, SettableToRatio<VectorGaussian, VectorGaussian>, SettableToWeightedSum<VectorGaussian>, ICloneable
{
[IgnoreDataMember]
[XmlIgnore]
public int Dimension { get; }
}
}
nuget.org | 0.0 %
Reference this API |
---|---|
.NET | 5.06.07.08.09.010.0 |
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to net7.0 | |
Assembly | Microsoft.ML.Probabilistic , Version=0.4.2403.801, PublicKeyToken=e4813102a62778da |
Referencing | Your project needs a package reference to |
Package | Microsoft.ML.Probabilistic (0.4.2403.801) netstandard2.0 |
Platform Restrictions | The property getter is supported on all platforms. |
- Built-in API
- Package-provided API