VectorGaussianMoments
VectorGaussianMoments()
VectorGaussianMoments(Int32)
VectorGaussianMoments(VectorGaussianMoments)
VectorGaussianMoments(Double, Double)
VectorGaussianMoments(Vector, PositiveDefiniteMatrix)
Dimension
IsPointMass
Mean
Point
Variance
Clone()
Copy(VectorGaussianMoments)
Equals(Object)
FromMeanAndPrecision(Double, Double)
FromMeanAndPrecision(Vector, PositiveDefiniteMatrix)
FromMeanAndVariance(Double, Double)
FromMeanAndVariance(Vector, PositiveDefiniteMatrix)
GetAverageLog(VectorGaussianMoments)
GetHashCode()
GetLogAverageOf(VectorGaussianMoments)
GetLogAverageOfPower(VectorGaussianMoments, Double)
GetLogNormalizer()
GetLogProb(Vector)
GetMarginal(Int32)
GetMarginal(Int32, VectorGaussianMoments)
GetMean()
GetMean(Vector)
GetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
GetMeanAndVariance(Vector, PositiveDefiniteMatrix)
GetMode()
GetVariance()
GetVariance(PositiveDefiniteMatrix)
IsProper()
IsUniform()
MaxDiff(Object)
PointMass(Double)
PointMass(Vector)
Sample()
Sample(Vector)
SetMeanAndPrecision(Vector, PositiveDefiniteMatrix)
SetMeanAndVariance(Vector, PositiveDefiniteMatrix)
SetNatural(Vector, PositiveDefiniteMatrix)
SetTo(VectorGaussianMoments)
SetToPointMass()
SetToPower(VectorGaussianMoments, Double)
SetToProduct(VectorGaussianMoments, VectorGaussianMoments)
SetToProduct(VectorGaussianMoments, IList<Gaussian>)
SetToRatio(VectorGaussianMoments, VectorGaussianMoments, Boolean)
SetToSum(Double, VectorGaussianMoments, Double, VectorGaussianMoments)
SetToUniform()
ToString()
Uniform(Int32)
WeightedSum<T>(T, Int32, Double, T, Double, T)
operator *(VectorGaussianMoments, VectorGaussianMoments)
operator /(VectorGaussianMoments, VectorGaussianMoments)
operator ^(VectorGaussianMoments, Double)
xamarinios
namespace Microsoft.ML.Probabilistic.Distributions
{
[DataContract]
[Quality(QualityBand.Mature)]
public class VectorGaussianMoments : CanGetAverageLog<VectorGaussianMoments>, CanGetLogAverageOf<VectorGaussianMoments>, CanGetLogAverageOfPower<VectorGaussianMoments>, CanGetLogNormalizer, CanGetLogProb<Vector>, CanGetMean<DenseVector>, CanGetMeanAndVariance<Vector, PositiveDefiniteMatrix>, CanGetMode<DenseVector>, CanGetVariance<PositiveDefiniteMatrix>, CanSetMeanAndVariance<Vector, PositiveDefiniteMatrix>, HasPoint<Vector>, IDistribution, IDistribution<Vector>, Sampleable<Vector>, SettableToUniform, Diffable, SettableTo<VectorGaussianMoments>, SettableToPower<VectorGaussianMoments>, SettableToProduct<VectorGaussianMoments>, SettableToProduct<VectorGaussianMoments, VectorGaussianMoments>, SettableToRatio<VectorGaussianMoments>, SettableToRatio<VectorGaussianMoments, VectorGaussianMoments>, SettableToWeightedSum<VectorGaussianMoments>, ICloneable
{
public static VectorGaussianMoments operator /(VectorGaussianMoments numerator, VectorGaussianMoments denominator);
}
}
.NET | 5.06.07.08.09.010.0 |
---|---|
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to xamarinios | |
Assembly | Microsoft.ML.Probabilistic , Version=0.4.2403.801, PublicKeyToken=e4813102a62778da |
Referencing | Your project needs a package reference to |
Package | Microsoft.ML.Probabilistic (0.4.2403.801) netstandard2.0 |
Platform Restrictions | This framework does not have platform annotations. |
- Built-in API
- Package-provided API