StandardTrainersCatalog
AveragedPerceptron(BinaryClassificationTrainers, Options)
AveragedPerceptron(BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32)
LbfgsLogisticRegression(BinaryClassificationTrainers, Options)
LbfgsLogisticRegression(BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
LbfgsMaximumEntropy(MulticlassClassificationTrainers, Options)
LbfgsMaximumEntropy(MulticlassClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
LbfgsPoissonRegression(RegressionTrainers, Options)
LbfgsPoissonRegression(RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
LdSvm(BinaryClassificationTrainers, Options)
LdSvm(BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean)
LinearSvm(BinaryClassificationTrainers, Options)
LinearSvm(BinaryClassificationTrainers, String, String, String, Int32)
NaiveBayes(MulticlassClassificationTrainers, String, String)
OneVersusAll<TModel>(MulticlassClassificationTrainers, ITrainerEstimator<BinaryPredictionTransformer<TModel>, TModel>, String, Boolean, IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>, Int32, Boolean)
OnlineGradientDescent(RegressionTrainers, Options)
OnlineGradientDescent(RegressionTrainers, String, String, IRegressionLoss, Single, Boolean, Single, Int32)
PairwiseCoupling<TModel>(MulticlassClassificationTrainers, ITrainerEstimator<ISingleFeaturePredictionTransformer<TModel>, TModel>, String, Boolean, IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>, Int32)
Prior(BinaryClassificationTrainers, String, String)
Sdca(RegressionTrainers, Options)
Sdca(RegressionTrainers, String, String, String, ISupportSdcaRegressionLoss, Single?, Single?, Int32?)
SdcaLogisticRegression(BinaryClassificationTrainers, Options)
SdcaLogisticRegression(BinaryClassificationTrainers, String, String, String, Single?, Single?, Int32?)
SdcaMaximumEntropy(MulticlassClassificationTrainers, Options)
SdcaMaximumEntropy(MulticlassClassificationTrainers, String, String, String, Single?, Single?, Int32?)
SdcaNonCalibrated(BinaryClassificationTrainers, Options)
SdcaNonCalibrated(MulticlassClassificationTrainers, Options)
SdcaNonCalibrated(BinaryClassificationTrainers, String, String, String, ISupportSdcaClassificationLoss, Single?, Single?, Int32?)
SdcaNonCalibrated(MulticlassClassificationTrainers, String, String, String, ISupportSdcaClassificationLoss, Single?, Single?, Int32?)
SgdCalibrated(BinaryClassificationTrainers, Options)
SgdCalibrated(BinaryClassificationTrainers, String, String, String, Int32, Double, Single)
SgdNonCalibrated(BinaryClassificationTrainers, Options)
SgdNonCalibrated(BinaryClassificationTrainers, String, String, String, IClassificationLoss, Int32, Double, Single)
net5.0
namespace Microsoft.ML
{
public static class StandardTrainersCatalog
}
nuget.org | 0.0 %
Reference this API |
---|---|
Upgrade Planner | 0.0 %
Reference this API |
.NET | 5.06.07.08.09.010.0 |
.NET Core | 2.02.12.23.03.1 |
.NET Framework | 4.6.14.6.24.74.7.14.7.24.84.8.1 |
.NET Standard | 2.02.1 |
Information specific to net5.0 | |
Assembly | Microsoft.ML.StandardTrainers , Version=1.0.0.0, PublicKeyToken=cc7b13ffcd2ddd51 |
Referencing | Your project needs a package reference to |
Package | Microsoft.ML (5.0.0-preview.1.25127.4) netstandard2.0 |
Platform Restrictions | This API is supported on all platforms. |
- Built-in API
- Package-provided API